Как сделать сложное уравнение

Как создать

Как решать сложные составные уравнения?

Под сложными (составными) уравнениями мы понимаем уравнения, которые содержат два или более арифметических действия.

Решение таких уравнений выполняется по тем же правилам, которые мы рассмотрели на странице «Решение простых уравнений 5 класс» в этой же теме.

Но решение составных уравнений производится в определённой последовательности.

Расставляем порядок действий в уравнении.

Решаем как простое уравнение и находим «5y». Вспомним правило для нахождения неизвестного уменьшаемого.

Чтобы найти неизвестное уменьшаемое, надо к разности прибавить вычитаемое.

Теперь перед нами простое уравнение. Необходимо найти неизвестный множитель. Решаем уравнение по следующему правилу.

Чтобы найти неизвестный множитель, надо произведение разделить на известный множитель.

Не забудем выполнить проверку.

Всё верно. Значит уравнение решено правильно.

Другой способ решения сложных уравнений

Некоторые сложные (составные уравнения) можно решать другим способом. Зная и умея применять свойства сложения и вычитания, а также свойства умножения и деления, уравнения решаются следующем образом.

Упрощаем выражение, стоящее в левой части уравнения, используя одно из свойств вычитания.

Чтобы из суммы отнять число, нужно это число вычесть из одного слагаемого и прибавить результат вычитания к другому слагаемому.

Далее решаем простое уравнение, пользуясь правилом нахождения неизвестного слагаемого.

Упрощение выражений в уравнениях

Запомните!

Если в уравнении встречается выражения, которые можно упростить, то вначале упрощаем выражения, и только после этого решаем уравнение.

Левую часть уравнения можно упростить. Сделаем это.

Теперь решим простое уравнение по правилу нахождения неизвестного множителя.

Завершив пример, выполним проверку.

Номер материала: ДБ-326081

Не нашли то что искали?

Вам будут интересны эти курсы:

Оставьте свой комментарий

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Источник

Памятка «Как составлять и решать сложные уравнения?»

Памятка «Как составлять и решать сложные уравнения?»

Просмотр содержимого документа
«Памятка «Как составлять и решать сложные уравнения?»»

Под сложными (составными) уравнениями мы понимаем уравнения, которые содержат два или более арифметических действия.

Решение таких уравнений выполняется по тем же правилам, которые мы рассмотрели на странице «Решение простых уравнений 5 класс» в этой же теме.

Но решение составных уравнений производится в определённой последовательности.

Расставляем порядок действий в уравнении.

Определяем неизвестное по последнему действию. Последнее действие в данном уравнении — это вычитание. Обращаем ваше внимание, что на этом этапе наше неизвестное — это «5y», и именно его мы рассматриваем как уменьшаемое.

Решаем как простое уравнение и находим «5y». Вспомним правило для нахождения неизвестного уменьшаемого.

Чтобы найти неизвестное уменьшаемое, надо к разности прибавить вычитаемое.

Теперь перед нами простое уравнение. Необходимо найти неизвестный множитель. Решаем уравнение по следующему правилу.

Чтобы найти неизвестный множитель, надо произведение разделить на известный множитель.

Не забудем выполнить проверку.

Всё верно. Значит уравнение решено правильно.

Другой способ решения сложных уравнений

Некоторые сложные (составные уравнения) можно решать другим способом. Зная и умея применять свойства сложения и вычитания, а также свойства умножения и деления, уравнения решаются следующем образом.

Упрощаем выражение, стоящее в левой части уравнения, используя одно из свойств вычитания.

Чтобы из суммы отнять число, нужно это число вычесть из одного слагаемого и прибавить результат вычитания к другому слагаемому.

Далее решаем простое уравнение, пользуясь правилом нахождения неизвестного слагаемого.

Упрощение выражений в уравнениях

Запомните!

Если в уравнении встречается выражения, которые можно упростить, то вначале упрощаем выражения, и только после этого решаем уравнение.

Левую часть уравнения можно упростить. Сделаем это.

Теперь решим простое уравнение по правилу нахождения неизвестного множителя.

Источник

Как решать уравнения: от простого к сложному 2-4 класс

Любые уравнения решаются на основе зависимости между компонентами. Простые уравнения учащиеся начальной школы начинают решать уже 2 классе. По мере взросления, усложняются и уравнения, переходя от простых к сложным уравнениям в 4 классе начальной школы.

Читайте также:  Как сделать гель для голоса

Простые уравнения во 2 классе решают на основе взаимосвязей между компонентами при сложении или вы­читании. Важно соблюдать алгоритм решения уравнения.

Решение уравнения

Объяснение

чтобы найти первое сла­гаемое, нужно из сум­мы вычесть второе сла­гаемое.

Проверяю: 28 + 7 = 35

чтобы найти уменьшаемое, нужно к разности прибавить вычитаемое.

Вычисляю: 20 + 13 = 33

чтобы найти вычитаемое, нужно из уменьшаемого вычесть раз­ность

Простые уравнения вида х • 6 = 72, х : 8 = 12, 64 : х = 16 решают на основе взаимосвязей между результатами и компонентами действий.

Решение уравнения

Объяснение

1) Читаю уравнение: произ­ведение х и 6 равно 72.

2) Вспоминаю правило: что­бы найти неизвестный множитель, надо произведение разделить на известный множитель.

3) Вычисляю: х = 72 : 6

4) Проверяю: 12 • 6 = 72

1) Читаю уравнение: частное х и 8 равно 12.

2) Вспоминаю правило: чтобы найти неизвестное делимое, надо частное умножить на делитель.

3) Вычисляю: х = 12 • 8

4) Проверяю: 96 : 8 = 12

1) Читаю уравнение: частное 64 и х равно 16.

2) Вспоминаю правило: чтобы найти неизвестный делитель, надо делимое разде­лить на частное.

3) Вычисляю: х = 64 : 16

4) Проверяю: 64 : 4 = 16

Сложные уравнения в начальной школе состоят из нескольких арифметических действий. Алгоритм решения заключается в превращение сложного уравнения в простое.

Уравнения на нахождение неизвестного слагаемого

1)Вычисляю значение выражения в правой части уравнения: 12 • 4 = 48.

2) В уравнении х + 13 = 48 неизвестно первое слагаемое.

3) Вспоминаю правило: чтобы найти неизвест­ное слагаемое, нужно из суммы вычесть из­вестное слагаемое.

5) Проверяю: 35 + 13 = 12 • 4

Уравнения на нахождение неизвестного уменьшаемого

1) Вычисляю значение выражения в правой части уравнения: 51 : 17 = 3.

3) Вспоминаю правило: чтобы найти неизвест­ное уменьшаемое, нужно к разности приба­вить вычитаемое.

4) Вычисляю: х = 24 + 3

Уравнения на нахождение неизвестного вычитаемого

1) Вычисляю значение выражения в правой части уравнения: 180 + 120 = 300.

2) В уравнении 640 – х = 300 неизвестно вычи­таемое.

3) Вспоминаю правило: чтобы найти вычитаемое, нужно из уменьшаемого вычесть раз­ность.

4) Вычисляю: х = 649 – 300

Уравнения на нахождение неизвестного множителя

1) Вычисляю значение выражения в правой части уравнения: 131 + 254 = 385.

2) В уравнении 5 • х = 385 неизвестен второй множитель.

3) Вспоминаю правило: чтобы найти неизвест­ный множитель, нужно произведение разделить на известный множитель.

4) Вычисляю: х = 385 : 5

5) Проверяю: 5 • 77 = 131 + 254

Уравнения на нахождение неизвестного делимого

64 000 : 8 = 800 • 10

1) Вычисляю значение выражения в правой части.

2) Вспоминаю правило: чтобы найти делимое, нужно частное умножить на делитель.

Уравнения на нахождение неизвестного делителя

1) Вычисляю значение выражения вправой части.

2) Вспоминаю правило: чтобы найти неизвестный делитель, нужно делимоеразделить на частное.

Как решать сложные уравнения в 4 классе подробно рассмотрено в статье по ссылке.

Источник

Решение рациональных уравнений сложного вида в 9-м классе

Разделы: Математика

Оборудование: доска раздвижная, листы – задания для устного счета, компьютер, экран.

Время: 90 минут – 2 урока.

1. Проверка домашнего задания (5 минут).

2. Устный тест – повторение:

На парте лежат карточки с решениями и ответы к ним, выбрать правильный ответ и объяснить почему?

Правильные ответы: 1 задание – 2; 2 зад. – 3; 3 зад. – 3; 4 зад. – 2; 5 зад. – 3.

Учитель: Под рациональным уравнением принято понимать уравнение, которое может быть записано в виде: аnx n + an-1x n-1 + … a2x 2 + a1x + a =0, где an, an-1, …a – заданные числа, а х – неизвестное. Простейшие рациональные уравнения мы решаем с помощью четырех основных методов.

(Метод перехода от равенства, связывающего функции, к равенству, связывающему аргументы; метод замены переменной; метод разложения на множители – группировки; функционально – графический метод).

Мы научились решать рациональные уравнения второй степени, а третьей, четвертой?

А каким методом вы решите уравнение вида a) х 3 – 8 + х – 2 = 0?

Подсказка: желательно подвести к произведению многочленов.

Да, верно, используем метод разложения на множители – группировки. Группируем слагаемые, применим формулы сокращенного умножения и получим произведение нескольких множителей – многочленов в левой части уравнения, а в правой – нуль.

(Вызывается ученик сильный в математике, а если нет, то показывает учитель ход решения).

б) А при таком уравнении х 3 – 3х + 2 = 0 можно использовать метод группировки?

Читайте также:  Как сделать слойки с сыром

Учитель: Вспомним, при решении биквадратных уравнений какой метод мы использовали? Самый распространенный из всех методов – да, метод замены переменной – метод подстановки. Искусство производить замену переменных заключается в том, чтобы увидеть, какая замена будет более рациональна и быстрее приведет к успеху. На сегодняшнем уроке мы это и рассмотрим.

Разберем решение данного уравнения:

Дорешать самостоятельно, дальнейшее решение проецируется на экран.

По формуле решаем второе уравнение =

= = = = =

Учитель: Рассмотрим уравнение вида

г) (х 2 + 10х ) 2 + (х 2 + 5) 2 = 157.

Метод замены переменной легко увидеть, если воспользоваться формулой квадрата суммы для второй скобки. (х 2 + 10х ) 2 + (х 2 +10х + 25) = 157; (Далее решает ученик у доски, а остальные – самостоятельно).

Пусть тогда получим

Учитель: Рассмотрим уравнение вида

Перемножим между собой первую и третью, вторую и четвертую скобки, получим (х 2 – 5х – 14) ((х 2 – 5х + 4) – 40.

Введем замену: х 2 – 5х – 14 = t, где t – любое число, получим t(t + 18) = 40, t 2 + 18t – 40 = 0.

(Работает учитель, показывая ход решения или ученик с помощью учителя).

Решим данное уравнение по т. Виета

Решим систему уравнений

Ответ: х1 = 2, х2 = 3, х3 = х4 =

Проверка решения данного уравнения с помощью проекции решения на экране.

+1 + 4 = + 2+ 3. Данное условие равенства выполняется, поэтому раскроем скобки, группируя первый множитель с последним и второй с третьим.

Тогда данное уравнение примет вид: (х 2 + 5х + 4) (х 2 + 5х +6) = 24.

Полагая х 2 + 5х = t, получим квадратное уравнение (t +4)(t +6) = 24,

Затем решаем уравнения

Учитель: Уравнения вида ах n + a1x n-1 + … + akx k + … + a1x + a = 0, где коэффициенты членов, равно от стоящих от концов, равны между собой, называют симметрическими уравнениями.

Симметрические уравнения обладают следующими свойствами:

2. Уравнение четной степени 2n решаются с помощью подстановки

V = x + сводится к уравнению степени n.

Данное уравнение симметрическое, так как коэффициенты равно отстоящих от концов, равны между собой. Степень уравнения нечетная равная 5, поэтому корень данного уравнения х = – 1.

Пусть Разделим левую часть уравнения на х + 1 и получим симметрическое уравнение четвертой степени:

Разделим обе части уравнения на х 2 : 2х 2 + 3х – 16 + 3• + 2• 1/х 2 = 0, и сгруппируем члены уравнения: 2(х 2 + 1/х 2 ) + 3 (1 + ) – 16 = 0.

Решив данные уравнения, получим еще четыре корня исходного уравнения.

Учитель: Прошу вас, ребята, решить самостоятельно с последующей проверкой симметрическое уравнение четвертой степени. А почему оно симметрическое?

з) 2х 4 + 3х 3 – 16 х 2 + 3х + 2 = 0.

Разделим обе части уравнения на х 2 , получим 2х 2 + 3х – 16 + + 2/х 2 =0.

Сгруппируем (2х 2 + 2/х 2 ) + (3х+ ) – 16 = 0, 2(х 2 +12/х 2 ) + 3(х+ ) – 16 =0.

Учитель: Мы рассмотрели симметрические уравнения, являющиеся частным случаем возвратных уравнений. Следовательно, и ход их решения будет похожим, но более подробно мы познакомимся с возвратными уравнениями и рассмотрим более подробно ход решения на следующем занятии. А сейчас,

я вам предложу домашнее задание на два варианта для самостоятельного решения. Дополнительно даны ответы ко всем уравнениям. Не сможете справиться, рассмотрим на уроке. а кто-то хочет больше решить, с довольствием приветствую вас.

Выберите ответы, выполняя домашнее задание.

Учитель: Подведем итог нашей темы. Уравнения третьей и четвертой степени решались в общем случае методом замены переменной, в который заключается в том, что для решения уравнения вида f(x) =0 вводят переменную t = g(x) и выражают f(x)через t, получая новое уравнение w(t) = 0. Решая затем уравнение w(t)= 0, находят его корни 1, t2, … tn>. После чего получают совокупность n – уравнений g(x) = t1, g(x) = t2, … g(x) = tn, из которых находят корни исходного уравнения.

Источник

Математика

5/(x – 1) – 3/(x + 1) = 15/(x 2 – 1)

Общий знаменатель есть x 2 – 1, так как x 2 – 1 = (x + 1)(x – 1). Умножим обе части этого уравнения на x 2 – 1. Получим:

или, после сокращения,

Рассмотрим еще уравнение:

Решая, как выше, получим:

5(x + 1) – 3(x – 1) = 4
5x + 5 – 3x – 3 = 4 или 2x = 2 и x = 1.

Посмотрим, оправдываются ли наши равенства, если заменить в каждом из рассмотренных уравнений x найденным числом.

Для первого примера получим:

Видим, что здесь нет места никаким сомнениям: мы нашли такое число для x, что требуемое равенство оправдалось.

Для второго примера получим:

5/(1-1) – 3/2 = 15/(1-1) или 5/0 – 3/2 = 15/0

Здесь возникают сомнения: мы встречаемся здесь с делением на нуль, которое невозможно. Если в будущем нам удастся придать определенный, хотя бы и косвенный, смысл этому делению, то тогда мы можем согласиться с тем, что найденное решение x – 1 удовлетворяет нашему уравнению. До этой же поры мы должны признать, что наше уравнение вовсе не имеет решения, имеющего прямой смысл.

Читайте также:  Как сделать самому дома шкаф

Подобные случаи могут иметь место тогда, когда неизвестное входит как-либо в знаменатели дробей, имеющихся в уравнении, причем некоторые из этих знаменателей, при найденном решении, обращаются в нуль.

(x + 3)/(x – 1) = (2x + 3)/(2x – 2)

Можно сразу видеть, что данное уравнение имеет форму пропорции: отношение числа x + 3 к числу x – 1 равно отношению числа 2x + 3 к числу 2x – 2. Пусть кто-либо, в виду такого обстоятельства, решит применить сюда для освобождения уравнения от дробей основное свойство пропорции (произведение крайних членов равно произведению средних). Тогда он получит:

(x + 3) (2x – 2) = (2x + 3) (x – 1)

2x 2 + 6x – 2x – 6 = 2x 2 + 3x – 2x – 3.

6x – 2x – 6 = 3x – 2x – 3

Перенесем неизвестные члены влево, известные вправо — получим:

Вспоминая данное уравнение

(x + 3)/(x – 1) = (2x + 3)/(2x – 2)

мы сейчас же подметим, что найденное значение для x (x = 1) обращает в нуль знаменателей каждой дроби; от такого решения мы, пока не рассмотрели вопроса о делении на нуль, должны отказаться.

Если мы подметим еще, что применение свойства пропорции усложнило дело и что можно было бы получить более простое уравнение, умножая обе части данного на общий знаменатель, а именно на 2(x – 1) — ведь 2x – 2 = 2 (x – 1), то получим:

2(x + 3) = 2x – 3 или 2x + 6 = 2x – 3 или 6 = –3,

Это обстоятельство указывает, что данное уравнение не имеет таких, имеющих прямой смысл решений, которые не обращали бы знаменателей данного уравнения в нуль.
Решим теперь уравнение:

(3x + 5)/(x – 1) = (2x + 18)/(2x – 2)

Умножим обе части уравнения 2(x – 1), т. е. на общий знаменатель, получим:

Найденное решение не обращает в нуль знаменатель и имеет прямой смысл:

или 11 = 11

Если бы кто-либо, вместо умножения обеих частей на 2(x – 1), воспользовался бы свойством пропорции, то получил бы:

(3x + 5)(2x – 2) = (2x + 18)(x – 1) или
6x 2 + 4x – 10 = 2x 2 + 16x – 18.

Здесь уже члены с x 2 не уничтожались бы. Перенеся все неизвестные члены в левую часть, а известные в правую, получили бы

Это уравнение мы теперь решить не сумеем. В дальнейшем мы научимся решать такие уравнения и найдем для него два решения: 1) можно взять x = 2 и 2) можно взять x = 1. Легко проверить оба решения:

1) 2 2 – 3 · 2 = –2 и 2) 1 2 – 3 · 1 = –2

Если мы вспомним начальное уравнение

(3x + 5) / (x – 1) = (2x + 18) / (2x – 2),

то увидим, что теперь мы получим оба его решения: 1) x = 2 есть то решение, которое имеет прямой смысл и не обращает знаменателя в нуль, 2) x = 1 есть то решение, которое обращает знаменателя в нуль и не имеет прямого смысла.

Найдем общего знаменателя дробей, входящих в это уравнение, для чего разложим на множители каждого из знаменателей:

1) x 2 – 5x + 6 = x 2 – 3x – 2x + 6 = x(x – 3) – 2(x – 3) = (x – 3)(x – 2),

2) x 2 – x – 2 = x 2 – 2x + x – 2 = x (x – 2) + (x – 2) = (x – 2)(x + 1),

3) x 2 – 2x – 3 = x 2 – 3x + x – 3 = x (x – 3) + (x – 3) = (x – 3) (x + 1).

Общий знаменатель равен (x – 3)(x – 2)(x + 1).

Умножим обе части данного уравнения (а его мы теперь можем переписать в виде:

на общего знаменателя (x – 3) (x – 2) (x + 1). Тогда, после сокращения каждой дроби получим:

3(x + 1) – 2(x – 3) = 2(x – 2) или
3x + 3 – 2x + 6 = 2x – 4.

Это решение имеет прямой смысл: оно не обращает в нуль ни одного из знаменателей.

Если бы мы взяли уравнение:

то, поступая совершенно так же, как выше, получили бы

3(x + 1) – 2(x – 3) = x – 2

3x + 3 – 2x + 6 = x – 2

3x – 2x – x = –3 – 6 – 2,

откуда получили бы

что невозможно. Это обстоятельство показывает, что нельзя найти для последнего уравнения решения, имеющего прямой смысл.

Источник

Оцените статью
Полезные советы и лайфхаки для жизни